# Pushdown Automata <br> Lecture 21 <br> Section 7.1 

Robb T. Koether<br>Hampden-Sydney College

Wed, Oct 12, 2016

## Outline

(1) Machines for CFGs

2 Pushdown Automata
(3) Examples

- Balanced Parentheses
- Algebraic Expressions

4) Assignment

## Outline

## (9) Machines for CFGs

## 2 Pushdown Automata

(3) Examples

- Balanced Parentheses
- Algebraic Expressions

4 Assignment

## Grammars vs. Machines

## Definition (Context-free language)

A context-free language (CFL) is the language $L(G)$ of a context-free grammar $G$.

- Given a regular language, we can describe it by using a regular grammar or a machine (a DFA).
- A context-free language can be described by using a context-free grammar.
- Can it also be described by a machine?


## Machines for CFLs

- If a machine is to process the string $\mathbf{a}^{n} \mathbf{b}^{n}$, then it must be able to "remember" the number of a's.
- We will use a stack to do this.
- As each a is read, push it onto the stack.
- When $\mathbf{b}$ is read, pop an $\mathbf{a}$.
- When we are finished reading the string, the stack should be empty.


## Machines for CFLs

- Each transition will include five parts.
- The symbol read.
- The symbol popped.
- The string pushed.
- Two states (the state we go from and the state we go to).
- Such a machine is called a push-down automaton (PDA).


## Machines for CFLs

- The symbol read and the string pushed could be $\lambda$, but we must pop exactly one symbol from the stack.


## Machines for CFLs

- The symbol read and the string pushed could be $\lambda$, but we must pop exactly one symbol from the stack. Them's the rules.


## Machines for CFLs

- The symbol read and the string pushed could be $\lambda$, but we must pop exactly one symbol from the stack. Them's the rules.
- The current state and the symbols read and popped serve as "input."
- The destination state and the string pushed serve as "output."


## Machines for CFLs

- The symbol read and the string pushed could be $\lambda$, but we must pop exactly one symbol from the stack. Them's the rules.
- The current state and the symbols read and popped serve as "input."
- The destination state and the string pushed serve as "output."
- PDAs are inherently nondeterministic. They are sometimes called NPDAs.


## Machines for CFLs

- The symbol read and the string pushed could be $\lambda$, but we must pop exactly one symbol from the stack. Them's the rules.
- The current state and the symbols read and popped serve as "input."
- The destination state and the string pushed serve as "output."
- PDAs are inherently nondeterministic. They are sometimes called NPDAs.
- There are also deterministic PDAs, called DPDAs.


## Machine for $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$

## Example (Machine for $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ )



A machine for $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ : First attempt

## Machine for $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$

## Example (Machine for $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ )

- The first shortcoming is that we reach the final state without reading any b's.
- Thus, this machine would accept, for example, aaaa, aaaab, and aaaabb, as well as aaaabbbb.
- We need to read all the b's in one state and them move to a final state.


## Machine for $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$

## Example (Machine for $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ )

- A second shortcoming is that not every transition pops exactly one symbol, as required.
- To make the initial transition, there must already be a symbol on the stack.
- We will designate a special symbol, typically $\mathbf{z}$, to be the start stack symbol.


## Machine for $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$

## Example (Machine for $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ )



A mahcine for $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ : Second attempt

## Machine for $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$

Example (Machine for $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ )

- This machine still has one shortcoming.
- If we require the transition $\lambda, \mathbf{a} \rightarrow \mathbf{a}$ to move from the first state to the second state, then the machine will not accept $\lambda$.
- To remedy this, we could add a second possibility: $\lambda, \mathbf{z} \rightarrow \mathbf{z}$, but it would be simpler just to add a transition $\lambda, \mathbf{z} \rightarrow \mathbf{z}$ directly from the start state to the final state.


## Machine for $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$

## Example (Machine for $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ )



A machine for $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ : Final attempt

## Outline

## (1) Machines for CFGs

(2) Pushdown Automata
(3) Examples

- Balanced Parentheses
- Algebraic Expressions

4 Assignment

## Pushdown Automaton

## Definition (Pushdown automaton)

A pushdown automaton, abbreviated PDA, is a septuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$, where

- $Q$ is a finite set of states.
- $\Sigma$ is a finite input alphabet.
- $\Gamma$ is a finite stack alphabet.
- $\delta: Q \times(\Sigma \cup\{\lambda\}) \times \Gamma \rightarrow \mathcal{P}^{\prime}\left(Q \times \Gamma^{*}\right)$ is the transition function.
- $q_{0} \in Q$ is the start state.
- $z \in \Gamma$ is the start stack symbol.
- $F \subseteq Q$ is the set of accept states.
where $\mathcal{P}^{\prime}$ means the set of finite subsets.


## Example

## Example (PDA for $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ )

- The PDA that accepts

$$
\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}
$$

is

- $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$
- $\Sigma=\{\mathbf{a}, \mathbf{b}\}$
- $\Gamma=\{\mathbf{a}, \mathbf{z}\}$
- $F=\left\{q_{2}\right\}$


## Example

## Example (PDA for $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$ )

- and $\delta$ is given by
- $\delta\left(q_{0}, \mathbf{a}, \mathbf{z}\right)=\left\{\left(q_{0}, \mathbf{a z}\right)\right\}$
- $\delta\left(q_{0}, \mathbf{a}, \mathbf{a}\right)=\left\{\left(q_{0}, \mathbf{a a}\right)\right\}$
- $\delta\left(q_{0}, \lambda, \mathbf{z}\right)=\left\{\left(q_{2}, \lambda\right)\right\}$
- $\delta\left(q_{0}, \lambda, \mathbf{a}\right)=\left\{\left(q_{1}, \mathbf{a}\right)\right\}$
- $\delta\left(q_{1}, \mathbf{b}, \mathbf{a}\right)=\left\{\left(q_{1}, \lambda\right)\right\}$
- $\delta\left(q_{1}, \lambda, \mathbf{z}\right)=\left\{\left(q_{2}, \lambda\right)\right\}$


## Outline

## (1) Machines for CFGs

## 2 Pushdown Automata

## (3) Examples

- Balanced Parentheses
- Algebraic Expressions

4 Assignment

## Example

## Example (Pushdown automaton)

- Design a PDA that accepts the language
$\{w \mid w$ contains an equal number of a's and b's $\}$.


## Example

## Example (Pushdown automaton)

- The strategy will be to keep the excess symbols, either a's or b's, on the stack.
- One state will represent an excess of a's.
- Another state will represent an excess of b's.
- We can tell when the excess switches from one symbol to the other because at that point the stack will be empty.
- In fact, when the stack is empty, we may return to the start state.


## Example

## Example (Pushdown automaton)



## Outline

## (1) Machines for CFGs

(2) Pushdown Automata
(3) Examples

- Balanced Parentheses
- Algebraic Expressions

4) Assignment

## Examples

## Example (Pushdown automata)

- Let $\Sigma=\{\mathbf{a},()$,$\} . Design a PDA whose language is$

$$
\left\{w \in \Sigma^{*} \mid w \text { contains balanced parentheses }\right\} .
$$

## Outline

## (1) Machines for CFGs

(2) Pushdown Automata
(3) Examples

- Balanced Parentheses
- Algebraic Expressions
(4) Assignment


## Examples

## Example (Pushdown automata)

- Let $\Sigma=\{\mathbf{a}, \mathbf{b}, \mathbf{c},+, \times,()$,$\} . Design a PDA whose language is$

$$
\left\{w \in \Sigma^{*} \mid w \text { is a valid algebraic expression }\right\} .
$$

## Outline

(1) Machines for CFGs
(2) Pushdown Automata
(3) Examples

- Balanced Parentheses
- Algebraic Expressions

4) Assignment

## Assignment

## Assignment

- Section 7.1 Exercises 1, 3, 6bcdfj.

